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ABSTRACT

Weakly coupled semilinear parabolic systems of the form 4 - Alx)u = g(ut)
with homogeneous boundary conditionsg are studied. The nonlinear function
g : c([~r,01 x R,R") + R® is assumed to be locally Lipschitz continuous with
r > 0 a given real number and §{ C R® a bounded domain, a = du/dt, uy for
t > 0 is defined by u,(0,§) = ul(t+0,f), -r < 0 <0, £ ¢ 1 and A is a
uniformly elliptic second order diagonal operator. Let u be a bounded
clagssical solution. We first establish precompactness results for the orbit
of u in several function spaces. Using these results and assuming that a
Liapunov function V for the corresponding ordinary functional differential
equation z = g(zt) is known, we then show under some general conditions that

the limit set wt

(as t » =) of u consists of spatially homogeneous
functions only. Moreover, wt is invariant with respect to z = g(zt) and

V=0 on w'. The theory is illustrated with an example.

AMS (MOS) Subject Clasgifications: 35R10, 34G20
Key Words: Parabolic systems with functionals, orbital compactness,
asymptotic behavior.
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SIGNIFICANCE AND EXPLANATION

/In recent years, reaction-diffusion systems have become widely used as
models in biology, chemistry and population dynamics.
A major point of interest is the long-time behavior of the solutions.
For systems governed by ordinary differential equations the asymptotic
behavior is usually investigated using Liapunov functionals in conjunction
with an invariance principle. The purpose of this paper is to extend these
methods to a general class of distributed systems that admit possible |,

e /
hysteresis effects in the reaction mechanism. /Ggujnhlg ) /?JW1;Ti“’« AM‘ZZ;T
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ORBITAL COMPACTNESS AND ASYMPTOTIC BEHAVIOR
OF NONLINEAR PARABOLIC SYSTEMS WITH FUNCTIONALS

Reinhard Redlinger

0. Introduction

Let J = [-r,0] with r > 0 and 0 a bounded domain in R" with smooth boundary
3N. We will consider in this paper weakly coupled nonlinear parabolic systems of the

form (k = 1,2,...,n)
Gk - Ak(x)uk - gk(ut) in D= [0,®) x Q ,

(0.1) Bk(x)uk =0 on [0,®) x 3Q ,

u =9 in J x ? ’

where u = (u‘,...,u“), Gk - 3uk/3t ,g1C=¢C(Ix 0,8 + R ig a given function, ¢ € C,

k are uniformly elliptic operators of second order and the 8% 1linear boundary

the A
operators. As usually, u, €C for ¢t > 0 ig defined by ut(o,E) = u(t+0,£), 0 € J,
€ € {l. we say that u is a classical solution of (0.1), if the function u together
with its derivatives appearing in (0.1) is continuous in D such that equations (0.1)
are identically satisfied. A bounded classical solution u is a classical solution with
sup{lu(t,x)} : -r < ¢, x € I} ¢ =,

In the first part of the present paper we will prove compactness results for the orbit
T(u) = (ut : t » 0} < C of a bounded classical solution u of (0.1) in various function
spaces. We give, in particular, sufficient conditions on A, B, g and ¢ under which

T'(u) is relatively compact in the space

Y={vecC:Dvec, D,Dv(0,+) e (", R") for all i, 3} ,

i i3
endowed with the norm
i I
vl = vl + 1D vt + 1D, D v(0,*)t
(0,0} T g B ® g 5ar B3 "

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041 and Wissenschafts-
ausschuss der NATO under DAAD - Grant No. 300/402/502/6.
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] f+1_, denoting the supremum norm and Dy the partial derivative B/Gxi. We deduce these
X results from more general theorems valid for abstract nonlinear evolution equations of the
S
form .
LY u+ Au = g(t,ut) ’ t>0 ,
> (0.2)
! Uy =9
", where A 1is the infinitesimal generator of a strongly continuous analytic semigroup of
vy linear operators in a Banach space X.
ﬁ With (0.1) one can associate the system of ordinary functional differential equations
i z = 9(z,) , t>0 ,
o (0.3)
i z =9 in 3 ,
f with ; the restriction of g to the subspace Ch of spatially homogeneous functions
o
d in €. Assuming that a Liapunov function V for (0.3) is known and using the compactness
. results of the first part we show in section 3 that under some general conditions on the
- system (0.1) the limit set
N wl(u) = {v € C : There exists t, > = with u =+ v in c}
“. tk
- of a bounded classical solution u of (0.1) consists of gspatially homogeneous functions
- only. Moreover, w({u) is contained in the largest invariant subset (with respect to the
~
' system {(0.3)) of the set
> s={yec :Viy) =0} .
~ h
In other words, the asymptotic behavior of solutions to (0.1) is completely determined by
-
;)
f the behavior of the solutions 2z of (0.3). For systems (0.1) without functionals related
'; results have been proven in [9] (see also (8] and the literature cited in these papers).
" The necessary compactness result in this case was established in [10). We conclude the
paper by treating in detail the example (n=1)
. t 2-1
u= Au - {t-t a(s-t)|uls,x)| u(s,x)ds in (0,») x O ,
- (0.4)
- 3u/3N = 0 on (0,») x 3Q ,
- where N is the outer normal and a ¢ CZ(J) is a given nonnegative, convex function
r-. with a(-r) = 0. We show that our results are applicable to {0.4) for all £ > 1 in case
~ m= 1,2 and for 1 € 2 ¢ (m+2)/(m=2) otherwise.
-

-D-
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1. The abstract equation.

Let X be a Banach space with norm f+¢f and let A : D(A) C X be a clogsed, linear
operator in X with domain of definition D(A) dense in X. Throughout this section we

will assume that

1

(1 1A+ 0" T emrl + 17 for all Re A > 0

with some constant M > 0 independent of A (the norm in L(X), the space of bounded
linear operators from X to X, 4is also denoted by f#el). It follows from (1) that =-A
is the infinitesimal generator of an analytic semigroup {e-At : £t 20} in X and that

there are constants C,8 > 0 such that (I denotes the identity operator)

=At st -A 1 -5t
e

2) te ™1 < ce™®t , tae 1 cct e for t> 0 ,

(3) te™ - a™<ch for h>o

(cf. [13, Sect. 1)]. This permits us to define the fractional power 2™® of A for any

a > 0 by the integral

- 1 Iu ~AS a-‘lda
0 ’

A= T'(a)

where T denotes the gamma function. The operators A"® are one-to-one and elements of
L(X). Hence it is reasonable to define A% = (A"®)"1, A% jg a closed, densely defined

linear operator in X. With the norm lxlu = 1%, xu = p(A%) becomes a Banach space.

set a% = 1. Then, for any @ ¢ 8 < Yy, an inequality of moments
A o 1=

Ixh, < Axt N X

(4) x 8 CaBY x Y xla , X € Y

with A = (8-a)/(y-a) 4is valid. The constant CGBY is independent of x. For proofs,

see (13, l.c.).

tet r > 0 a real number and set J = { r,0]. Denote by 2 = C(J,X) the space of

all continuous functions froms J to X with norm et

= sup{M(s)h : s € J} ¢ =

If b> 0 and u € C({-r,b],X), then for 0 < t < b, u, € 2 is defined by “t(S) =

» L)
AT
K4 o N

u{t+s), s € J. Let y : [0,2) x Z » X be a given function. 1In this section we will study

continuity properties and boundedness in the spaces Xg. 0 < ac< 1, of solutions u of

the initial value problem f SRS
NS R
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Ol M = 1 >

U+ Au = glt,u) ’ t>o0 ,

(5) .
uo =9 €2 ,

=9

where, 4 = du/dt. A strong solution u of (5) is a function u € C(J U nf,x), whose

- s,

3

restriction to R' = (0,%) lies in c(®',p(a)) N c'(®*,X), such that (5) is identically
satisfied. A mild solution of (5) is a function u ¢ C{J U R+,X) with up = o satisfying

the integral equation

Eﬁ

(6) ult) = e At(0) + fg Mt Bgsunas , >0 .
If sup{lu(t)! : t » -r} < =, the solution is said to be bounded.
Let u be a fixed bounded mild solution of (5) and set f£(t) = g(t,u,) for t > 0.

Assume that there are constants X, P > 0 such that

(7a) TE£(e)1 < P for t >0 ,

(70) PE(t) - £{s)1 < K(|t-8] + lu, - u ) for t,8 >0 .
- For example, (7) holds if for any bounded set B C Z, the function g is (globally)
: Lipschitz continuous and bounded on [0,®) x B.
. Proposition 1. Let u be a bounded mild solution of (5), for which (7) is satisfied.
- Then, to any 0 € a < 1 with ¢(0) € X,, there is a constant C4 = C1(u) such that
3 fu(t)t, < C, for all t>0 .
. Proof. Using (4), by (2), (7a) we get

t -a_ -§(t-8)

. Tu(e)d < Clp(0)f + [rc  .clt-s) e P ds < const.
K with a constant independent of t.
? Proposition 2. Let u be a bounded strong solution of (5) with Lipschitz continuous

initial value ¢ € C(J,X) and ¢(0) € D(A). Assume (7). Then

)

Tu(t+h) - u(t)) < C,h for all t 20, 0 < h< 1 ,

2

with a constant C, independent of t, h.

Chehats
e e

Before proving proposition 2 we first state an elementary lemma. For convenience, the

»
v«
A .‘v‘.v‘

following notation is introduced: Let a, b, T : (0,®) + R with b(s) > 0, 0 < 1(8) < s

- l'.(
4
a8 Y.

RO,
MMM

4, _'i. )

P
L4
%
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. for 8> 0 and b ¢ LIOC[O,O). For y € C{-r,») define Sy : (0,®) + R by

t

{Sy)(t) = a(t) + Ir(:)

b(t-8) Iyslds , t>0 ,

‘ where |ys| = sup{y(s+d) : o € J}.

Lemma 3. Let S be defined as above and let vy,z ¢ Cl[-r,») satisfy
y{t) - (Sy)(t) ¢ z{t) - (52)(t) for t >0 ,

y(t) < z(t) for tedJ ,

Then vy(t) < z{(t) for all t > ~-r.

Proof. Since y, z are continuous and b is locally integrable, the functions Sy and

£ r v ¢
IR A

v e

Sz are well defined for t > 0. Suppose the assertion is false and let 0 = inf{t » -r :

"
e

y(t) = 2(t)}. Thus yl(o) = z(oc), which implies o0 > 0, and y(t) < z(t) for =-r < t < o.

v

But then at t = O,
z =y -8y +8Sy <<z~-82+8<€z~5z+8Sz=12 ,

a contradiction.

Proof of proposition 2. For any 0 < 1 < t, h> 0 we have

(8) ult+h) - u(e) = I, + I, + I3 + I,
where
I, = e et g
1 = jr+h SMEHE) e
2 T
I = fT (e-Ah - I)e-A(t_S) f(s)ds ,
3 0
1, = (¢ eP(E"8) (g(gtn) - £(s))ds .

By (2), (3) and (7a) we have

tr < ae™P o naTh re™t

2
. 1 le(0)h, < CThig(O)N,

1 < I:*h cpe ity ¢

and (asguming T < t)

-5-
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Choosing T = t(t) = max{0,t =~ (2CK)'1)' we see that the function

y(t) = lu(t+h) = u(t)d , t > -r ,

satisfies the inequality

ylt) < cgh+ JE ce P (t8)

3 K(h + |ys|)ds

-6(t-

<cC,h+ f: CKe s)lys|ds for t»>0 ,

3

where Cj, C; are constants and |y | = sup{y(sto) : o € J}.
Our hypotheses imply that there is a constant C, > 0, independent of h < 1, with
y(t) € Cgh for ted .
Let
z(t) = Mh for ¢t> -r ,
where M > C4 is a constant. The agsertion will follow from lemma 3, provided we can
choose M such that
Mh > C3h + I: CKe-G(t—S)Mh ds for all t > 0 .
But this is equivalent to

1 -5({t-1)
- e

M > Cy + CKM & (1 y for t >0 .

Hence it suffices to choose M > max(C4,2C3).

Proposition 4. Under the hypotheses of proposition 2 there is to any 0 < a <1 a
constant Cg = CS(G) such that

fu(t+h) - u(t)la < C.h for all t » 0, 0 < h< 1 .,

v

"
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Proof. Choose T = 0 in (B). Then Iy = 0 and

' -ae-G(t-s)

h d € const. h

t

< (-
Iqla fo const.(t-s)
by proposition 2. Further, using (4) we get

' 1-a

[ B4 I € const. h .

'
1a’ 2°a

Since the constants are independent of t 2 0, 0 < h € 1, ¢this gives the desired result.

Remark. Let tg > 0. Then the same method of proof shows (0 € a < 1)

lu( t+h) - u(t)ﬂ“ € conste h for t>¢t >0, 0<h<1 .

0
If u is only supposed to be a bounded mild solution of (5), then instead of proposition 4
we have

Proposition 5. Let u be a bounded mild solution of (5) such that (7) is satisfied.
Agsume 0 € a < p €1 and ¢(0) € X;. Then

p

1=
Tu(t+h) - u(t)lu < Céh

for all ¢t,h » 0 with a constant Cs independent of ¢, h.

Proof. In view of proposition 1 we may assume p < 1. Choose T =t in (B). Since

A€ ¢ L(X) for any € > 0, we get
1-p
< . .
II1Ha, H12 a const. h
Also
T < ft "Ao(e-Ah _ I)A_1H “\o:M-se-l\(t:--s)'l P as
3 a 0
< const. h1~p f; (t-s)p_a~1e-5(t-9)ds < const. h1-s .

This proves the assertion.

Proposition 6. Let the hypotheses of proposition 2 be satisfied and agsume that A" is

compact. Then to any 0 € a < 1 and any t; > 0 there is a constant Cq = Cofa,ty) with

race)r < > > .
u(t) a C7 for all ¢t to 0

Proof. Let Y = (1+a)/2. By the remark following proposition 4 we have

fa( t+h) - u(t)‘Y < const. h for all t > t,, 0 ¢ h< 1

0’

-7-
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with a constant independent of t, h. Since A"€ for any € > 0 is a compact operator
(4, p. 27] the assertion follows.

For the next proposition we assume that g is globally Lipschitz continuous in its
second argument, i.e. that there is a constant L > 0 such that
(9) Ig(t,01) - g(t,wz)l < Llw1 - wzlz for all t » 0, w1,¢2 €Z .

PS -

Proposition 7. Let u, u denote two mild solutions of (5) with initial values ¢, ¢ € Z

resp. Assume (9). Then for all ¢t > 0

° 0 (LC=8)t
(1) Iut - utlz € Clp - °'ze in case CL §»0 ,
o wr - -wt
i ] - V< - ot i - <
(ii) u, ul, Ce lg ol e in case CL 8 o ,

where w 1is the unique positive solution of ®w + CL Y = §,

Proof. Define y(t) = flu(t) - u(t)!l, £ > -r, with |Yt| = sup{y(t+o) : 0 € 3} for t » O.

Then
y(t) < g ~ °'z for t e€J
and

-8(t-8)
ly,)

- t
ylt) < Ce 6t]yol + jo CLe ds , t>0 .,

Let t, = max(0,t). Lemma 3 implies that for any € > 0 we have

(cr-8)e,
(i) y(t) < (Clygl + e , t > -~r
or resp.

-wt,
(ii) ylt) < (c+e)lygle , t > -r .

Letting € * 0+ the assertion follows in both cages.

-At -5t
Remark. In the foregoing proof we only made use of the bound e I € Ce for t > 0

with § not necessarily positive. Hence proposition 7 sharpens corollary 2.3 in [16]
(where it is assumed that C = 1) and proposition 3.2 in {17] (in case a = 0). Note that
the assertions of corollaries 3.7 and 3.8 in [16] immediately follow from proposition 7.

In contrast to [16, Section 3] we do not require g to be autonomous.

-
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Coroilary. To any 0 <€ a <1, t> 0 with ¢(0) = 9(0) ¢ X, there is a constant Cg =
Cgla,t) such that

fu(t) - u(t)la < Clg(0) - 0(0)'0 + Calv - wlz

Proof. In case CL - § » 0 we have

tace) - a(erh, < le”"R(o(0) - s(0))N,

-

+ f; mle PlETSYy ¢ |us -u b ds

s Z
< Clo(0) - o(o) 1 + [T cr(eeg) O ST B eyy - qr oBC7018,,
a* o Cs z
< Clop(0) = o(o)lla + I‘(1-«)(Lc)°cée(m'6)tlv - wlz .

The proof in case CL - § < 0 is similar.




2. Parabolic systems.

Let 2 C F® be a bounded domain whose boundary 3R for some 0 < p < 1 is a (m=1)-
dimensional cz*"-manifold such that £ 1lies locally on one side of 3R, cf. [5, §4.4].
Define Ty =J X ? and let C = c(ro,n“) with supremum norm. In this section we will

apply the results of section 1 to the weakly coupled parabolic system

(10a) i+ %% = *te,xu) in D= [0,e) x 0,
(k = 1,2,...,n), where u = (u‘,...,un) : D x PO + R is a vector valued function,
Gk = auk/at and u, €C for t > 0 is defined by “t(o'g) = u(t+o,E),(0,E) € Po- The

operators X are given by
m
ARSI

m
) X (x)0,p, + 5 qhd%
i,3=1

a
St Bt

with Di = B/Bxi- We assume that the coefficient functions a§j, a?

are u-Hdlder continuous in 9 and that (k = 1,2,.04,n)

by 4 T2 m =
) ajy(x)E; 65 > 2 I & forall £eRrR, xe@
i,3=1 ) i=1

with some positive constant A.
The boundary and initial conditions for {10a) are

85X =0 on [0, x 30 ,

(10b)
(10c) u=g9 in To .
Here
85X = b ou® + 6%3u%/38'%) for k = 1,2,...,n

1+

with ¢ =0 or 1 and bE € C1+u(aﬂ). Also Bk = Rk(x) € C “(an,n“) is an outward
pointing, nowhere tangent vector field on 3Q. 1In case 8k = 0 we assume that %z 1
on 30 and that the compatibility condition of first order is satisfied, i.e. that
Lkwk(O,x) - gk(o,x,w) =0 on 3N,

Let g : R" x @ x ¢ + B in (10a) be a given function and o € C with

2= n . X _k

®(0) € C(Q,R’) in (10c). Note that B ¢ (0} = 0 on 3R by (10b).

A classical solution u of (10) is a function u € C(I‘o V) E,Rn) whose restriction to

D lies in C1'2(5,Rn), i.e. whose components are continuously differentiable in D,

=10=

-
)
-

.
v

Rl

o 4 A7,
(A

‘e w

-
: ¥
X




twice with respect to x and once with respect to t, such that equations (10) are
identically satisfied. A bounded classical solution u of (10) is a classical solution
with sup{lu(t, )| : (£,x) ¢ oV D} < =,
Let X = IP(Q,R"), where 1 < p ¢ ®» 4is fixed but arbitrary. For sufficiently large
4 > 0, the operator A : D(A) + X defined by
ae = (L, 2% 4 au
with
D(A) = {v e w'P@,r") : B"* =0 on 22 for all x}

satisfies the assumptions on A in section 1, cf. (2, §I.19]. Let u be a fixed bounded
classical solution of (10) such that:

For some P, > m, the function f(t) = q(t,',ut) : Rf * X =
(H4)

Py n

L (Q,R) satisfies (7) . u

Then, by propositions 1 and 5 there are constants C4 = Cyla), C6 = Ce(a,p) such that

1-p
fa(e)f < cp , fult) = uls)t <€ C6|t-s|

1
for all ¢,s » 0, 0 € a < p € 1. But
A= n
(11) xa CC(P,R) for 0 < X < 2a - m/p
with continuous imbedding, cf. (4, Thm. 1.6.1). Hence, defining vg4 = 1-m/p0 we see that
for any 0 < v < v,
14y —
(12) u(t,*) € ¢ (2,R") for all t > 0
with uniformly bounded norm. Moreover, for any x € 5 we have (i = 1,2,...,m)

(13) u(e,x) € c (R ,RM), D ule,x) ¢ RN,

where again 0 < v < v, is arbitrary, with H8lder norms bounded uniformly in x.

For 0 € v < 1 define

< o}

0,1
Yy, = {vec’ (ro,n“) : vl

(v)

with
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(v) t

n
+ 2 (1p

vli_ + [D,v
1=1 - Py,

+ [Div]

i x v/Z,t) ‘

where, for V¢ C and 0 < a < 1,

Wi = sup{|¥(0,E)] : (0,8) €T}

W, , = supl]v(e,&) = viem) [0 s eeT, EFAn e,

4]

a,¢ = s9pllVEE) - ¥vis,0)] [t-s]™® : £ €®, t ¥ s eI} .

Since for 0 < v < p < 1, Yp

that the orbit T(u) = {ut : £t » 0} of a bounded classical solution u of (10) is

is compactly embedded in Yv, it follows from (12), (13)

relatively compact in ¥, for any 0 < v < Vg provided ¢ = ug € Yp for some p > v.
Further, if ¢ is sufficiently smooth, say o ¢ Y1, then proposition 6 gives

(14) alt,e) e C(@,RY) for all £t >0

with arbitrary 0 € v < Vor to 2 0. The HSlder norms are bounded uniformly in x. Write

(10a,b) as an uncoupled system of linear elliptic equations

XX = hk(xit) in @ ,
{15)
Bkuk = 0 on 3¢ ,

where hk(x;t) = qk(t,x.ut) - ﬁk depends on t as a parameter. Suppose that g has the
following property:
(“2) If ¢ € Yv for some 0 < v < 1 then, for any fixed

t » 0, the function h(x) = g(t,x,¢) is p-HSlder

continuoug in x € 6 with p = p(v), the p-H8lder

norm of h depending only on Vv and le(v).
Then, by (14) and (“2) the functions hi(x;t), t > to are w-HYlder continuous in x,
uniformly with respect to t, for some 0 < w < 1. Hence, by the Schaunder estimates
u(t,*) € Cz+w(5,nn) for all t > t4 > 0 with uniformly bounded norm, where w = min(u,w)

(cf. (6, Chap. 3]).

For 0 € v, 0 ¢ 1 let
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2= _n
Yv,o = (ve ¥, + v(0,°) e CT(R, R , IVI(V;G) <
where
n -0
] - - i .
h,ey = Vgt i §a1'01°jvl, + ,up{lnlojv(o.i) DiDjV(oln)l Jenl e g e®
’

Then, T, (u) = {“t : £ 21} for any T > 0 is relatively compact in Y,,o for all

0 < v« Vor 0<0<w. We suvmarize our results in two theorems.

Theorem 8. Let u be a bounded classical solution of (10) such that (Hy) is fulfilled.
Assume that the initial value ¢ € C with ¢(0,°) € cz(ﬁ}nn) satisfies ¢ ¢ Yp for some
0 < p < 4. Then the orbit T(u) = {“t 1t >0} of u is relatively compact in Y, for

any 0 € v < min(p,vg).

Theorem 3. Let u be a bounded classical solution of (10) satisfying (H4), (Hy). Assume
9 € Yy with ¢(0,*) € cz(ﬁ,nn). Then, Ti(u) = {u, : t > T} is relatively compact in

Yv,a for any 0 € v < vy, 0 < 0<Ww, where T >0 is arbitrary.

Remarks: &) Under the hypotheses of theorem 8, rt(“) for T 2 r is relatively compact
in Y, for any 0 < v « Vo- This is true even without the assumption ¢ € YD. Similarly,
if the assumption ¢ € Y, in theorem 9 is replaced by ¢ € Lip (J, C(E,Rp)), then the
assertion remains valid for T ? r. Conversely, suppose that under the hypotheses of

~

theorem 9 the function k(t,x) = q(t,x,ut) is an element of lez'w([o,tol x ﬁ,kn) for
some t, > 0 (see {5] for definition of this space). Then, by (5, Sect. 4.5]) it follows
that T = 0 can be admitted in theorem 9.

B) Let u be a bounded classical solution of (10) and assume: For any fixed t » 0 the
function g(t,*,u.) ¢+ & + ®' is measurable, and the set {glt,x,uy) = (e£,x) ¢ D} is
bounded. Then the function f£(t) = g(t,*,u,) satisfies (7a) in X = LP(Q,R") for any

pg > ' and the same is true for (7b) provided this inequality holds in X = LPO(Q.RP) for

some pg ? 1. Hence, in this case we can admit v, = 1 in the above considerations.

Y) Some simple examples for functionals that can be treated by the above method would be
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gle,x,¥) = ¥(~r,x), ¥(0,x)¥(-x,x) ,

| |f| ' v2(0,6)af ana
El<ix

Igr h(s)¥(s,x)ds with h € v .

On the other hand, there are functionals that do not fall within the scope of the LP-theory
developed above, as the example
(16) gl{t,x,b) = W(O,xo) ¢+ Xg € fixed
shows. However, (16) can be admitted, if we choose X = xc - C(E}Rn) with supremum norm
and define the operator A, : D(A.) C Xo X, by AV =Av, V€ D(A,) with

DA) ={vex :ve w2r3(Q,’"), av € X, .

85X = 0 on 3% for a1l %} ,
where q > m is a fixed, but arbitrary real number. By [14], ([15) inequality (16) is then
satisfied and from X, C X = LP(2,K") and D(A,) C D(A) for any 1< p < q it follows
that D(Ag) c D(AB) for all 0 € B < a € 1, Hence, theorems 8 and 9 can be proved as
above (with Vo = 1 and, of course, X replaced by X, in (H1)), provided D(Ac) is
dense in X.. But this is true only, if 8% = 4 in (10b) for ail k. 1In general, we have
to replace xc by )
X o=(vex :v =0 on 20 , if =0 in(10B)} ,

which in turn implies an additional condition on the nonlinearity g in (10a), namely:

For any k with 6% = 0 in (10b) we have

g¥(t,x,u,) = 0 for all t >0, x € 39,

u denoting a bounded classical solution of (10).

In each concrete case, using (10b) this condition can be easily verified.
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. 3. Asymptotic behavior.

Let C, = c(J,R®) the subspace of spatially homogeneous functions in C. We will

L 2 e n g

assume throughout this section that the nonlinearity g in (10a) is autonomous, i.e.

that g = g(ut). Consider the ordinary functional differential equation

(17a) z= g(zt) for £t >0 ,

" “add

(17b) z, = Y€ Ch .

S
Attt

For any set G C R define the subspace C; of C by

s

Cg={vec:wrpce} .
Let V : Cy * R a continuous function and set
V(4) = Tim " NV(zy) - V(W) for ¥ €Cp
S h+0+
1 where 2z = z(t;y) is the solution of (17a) with initial value zg = $. We say that
V :Cy,* R is a Liapunov function for (17) on cG,h = Cg N Che if V 1is continuous on
.
C and Vv <0 on cG,h' Let
. = rs - ¥
s {v e cG,h : V(Y) € 0}
and denote by
(18) M the largest set in S which is invariant
with respect to (17).
. (A set K C Ch is said to be invariant with respect to (17), if for any V¥ € K there is a
continucus curve w : R+ K with w(0) =¥ and 2z (w(Y)) = w(t+7r) for all t > 0, T € R.)
We then have the following assertion [3, §13):
If V is a Liapunov function on cG,h and if z(ts¥)
o is a bounded solution of (17) with values in G, then
L% + M as t *+ =,
. Let V be a Liapunov function for (17) on cG,h and define W : C + R by
. (19) Wie) = [o Vie(e,£))dE , e eCy .
let Yv,o with some 0 < v <1, 0 <0 < » be fixed in the sequel (5 is the constant

appearing in theorem 9). We introduce the following hypotheses:
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(Hy) For any ¢ € E& N Yv,o satisfying the compatibility
condition of first order the initial value problem (10)
has a unique classical solution u with u, € Ee
for t » 0. Moreover, toany T > 0 there is a constant
P, depending only on T and '¢'(v,o)' such that
]u(t,x)] <P forall -r < £t<T, xe¢ .

(Hy,) There are functions ck [ C(lP,R+), which have only

isolated zeros, such that

W(e) = Tim h'(W(u) - wie))
h+0+

n
<=l 7 eFet0,£0)]90% (0,012 + Vot 80) TaE
k=1

for all ¢ € C N Y Lo’ u = u(p) denoting the solution of

(10) with initial value ¢.

Theorem 10. et u be a bounded classical solution of (10), where g = q(ut) is
autonomous and locally Lipschitz continuous. Assume that the initial vaiue ; of ;
satisfies o € Lip(J,C(R,B")), 9(0,+) € c2(R,R") and that (H,), (H,) are fulfilled for
;, g. Let the values of u lde in a set GC R® and let there exist a Liapunov
function V for system (17) on CG,h‘ Assume (H3) and (H,).

Then ;; +M as t+*® in C, where M is defined by (18), i.e. the asymptotic
behavior of ; is uniquely determined by the asymptotic behavior of the solutions z of

the ordinary functional differential equation (16).

Proof. Let
w(u) = {v € C : There exists ty + » with ;; +v in ¢} .
k
Then
w@) = N r. ()
>0
-16=
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. let 9y € w(u) be arbitrary.

and by theorem 9 w(u) is nonempty and compact in Y,
,

o

Then Py € cG 9] Yv,o and the solution u, = uo(oo) of (10) with initial value ¢, is
well defined by (H3) (note that o, satisfies the compatibility conditions). Using a cut-
off procedure we see by (H1), (H3) and the corollary to proposition 7 that for every t > 0

(assuming :t

+ 9.)
X 0

Ye ™ ut(“t ) * “o,t(°o) in C (k + =) .
k k
Hence w(u) is positively invariant.

By compactness, there exists a subsequence tn1 + © guch that 1lim u - 1 =9,

n1->m n1

exists in C. NY

G v. o Taking further subsequences and then the diagonal subsequence in the
’

usual way we find t,. + ® such that '

u >

in c_NY ag n' + o for j =0,1,2,.0. &
n'-j G v

‘Pj ,0
Define a curve w : R+ C by
wit) = “t+j(°j) for t > =3 (3 =0,1,2,ees )
This is consistent because
“t+j(°j) =u (o) for t> -3 3 -k .
It follows that m(G3 is an invariant set with respect to (10).

By hypothesis (H,) the function W(;;) is decreasing for, say, t » r. Since it is
bounded below, W must be constant on w(:}. Hence Q(oo) = 0 for any ? € m(G}. This
implies in particular that ¢4,(0,x) is independent of x by the assumptions on the ck
in (H4). But then oo(t,x) is independent of x for all t € J Dby the invariance of

w(u). We thus see that w{u) C M, where M is defined by (18), and the proof is

complete.

Remarks: (i) If g 1is globally Lipschitz continuous in C, then sufficient conditions
for (H3) to hold can be derived from the results in [11] using (5, Section 4.5]. 1In the
general case of only locally Lipschitz continuous g the crucial point is the derivation
of an a priori bound for lul (depending of course on nw'(v,o))' To this end, the

following two methods can be used:
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a) comparison arguments, cf. (11];

8) functional analytic methods (feedback arguments), cf. section 4 and [12].
(ii) Our assumptions on the initial function ¢ are quite strict (compatibility
conditions, smoothness, boundary behavior). It should be clear, however, that the results

of this section are valid under any conditions on ¢ that will insure the solution to be

classical for t » t, for some ¢t > 0. We then simply consider the initial boundary

value problem (10) on the time interval [t0+r,~).

(iii) The proof of theorem 10 follows [4, Section 4.3). As in [4, L.c] one can
additionally show that w(u) is connected in C.

(iv) As shown by the example studied in [7]), in special cases the ansatz (19) may also be

useful, if g depends on x as well as on u,.
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. 4. An example
: We consider the initial boundary value problem (n=1)
4 .
) (20a) = 8u- (% a(e) nu(tes,x))ds in D ,
)
)
(20b) du/3N = 0 on (0,=) x 30 ,
{20c) u=g9 in ro Y

where N denotes the outer normal to 2 and
-1
hz) = {z]|*"'z2 , z e R, for some L > 1 .
The corresponding partial differential equation
v = dv - lvll-‘v in D
has been used as a model squation by several authors, see e.g. (1].
Let us assume that the density a 1in (20a) satisfies:
(21) a ¢ CZ(J) is a nonnegative convex function, with a(-r) = 0

(ct. (3, §14]). Pollowing the procedure outlined in section 3 and using the results of (3]

R B 3

we define a function W : C *+ R by

Wie) = fQ Vie(*,E))AE , e €C ,
where
1 /0 0 2
VIU) = HW0)) + 5 [ ats)(f] h(4(o))dal®das , ¥ ecCy
with
Hz) = [E nzddz , tee. Bz = 2T L zer .

We get (for smooth o)

Wie) = [ h(e(0,£))80(0,8)aE + lq Vie(+,£))aE

= = p'(e(0,6))[9000,6)) 2aE + [ Flo(e,E))aE
(22)
V) = - 2acn (/2 ntuis)as)?

1 ¢0 0 2
5 [, s [!s n(¥(o))do) “as .

Hence W is a Liapunov function for (20) satisfying (H,) with G = R. (Note that a»o
in J by (21).)

Now assume that the initial function ¢ in (20c) is such that

~-19-
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ce/z"(ro) with ¢(0,+) € c25(@) for some € > 0 .

9 €

(23)
Also 3¢/3N =0 on 23N .
It then follows from [11, Thms. 3.1 and 3.3] that for some T > 0 the boundary value

problem (20) has a unique continuous solution u ¢ C({-r,T] x 55. ‘Moreover, this solution
is classical for t » 0. We will show next that there is an a priori bound for |u|,
independent of T, provided that m < 2(R+1)/(2~1).
In fact, it follows from (22) that W(ut) < w(uT) for any 0 < 1 < t and hence by
continuity
Wu,) € Wluy) = W) for 0 < t<T ,
which gives an a priori bound for wu(t,*) in L1+1(9) independent of t.
To (20) corresponds the abstract integral equation
(24) ult) = ePt(0) + [§ eP(ES)(u )as
with uy, =9, where the operator A in X = LP(Q), 1 <p <> is defined as in section 2
and
k(u,) = -[% als)htu(t+s)ras , t>0 .
For 0 < £t €T, u is a solution of (24). Let 0 < a < 1, Then by (2), (4)

-a
lu(e)l < C .t lv(O)l<p +C sup(lk(ut)l<p : 0< t<T)

1 > a2 >

for 0 < t < T with constants Cyy independent of t and l-l<P> denoting the norm in
tP(Q). But
(25) lk(w)l<P> <K sup{lw(o)l:q> :0€J} for b eC
with 1< p, g <®, g =2 and the constant K independent of ¥. Furthermore, since
u 1is continuous on [-r,T] x 5, there is a ty > 0 such that, say,

lute,x)| € 20090+ 1) for -rctct, xen .
(Using comparison functions of the form M(1 - Kt)'1 with X, M congtant, it is easy to
give an explicit positive lower bound for tyg in terms of lwu’, cf. (11, Thm. 3.4].)

By (4, Thm. 1.6.1]

(26) pa® C 1P, if - %< 2a - % , 1<pc=
Hence, summing up and using (11), (26) we see that an a priori bound on u(t) in LI

implies an a priori bound on u(t) in

=20~
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C(H) in case 2q > mt
and in
LD(Q) in case 2g <m2 , 1< p <« (é - %)-1 R
both bounds being independent of t.
We start with a bound in t¥*1(@). 1f m < 2(1 + £7') this leads to a bound in

C(0) and we are done. If m > 2(1 + k") we get a bound in L?(Q) with »p being
14 2.-1

arbitrary close to (E:T - ;) . Thus we can choose p > #+1 if and only if
241
(27) m<2-i-:.

Assuming (27) and repeating the above reasoning we get a nondecreasing sequence (py) of

real numbers with

g 2 -1 £ 2. -1
o1=o<(“1-m) ' pk+1<(pk- )

such that wu(t) is.bounded in ka(ﬂ), uniformly with respect to t. But it is easy to
show that after finitely many steps Py can be chosen so as to fulfill 20y > ml. In the
next step this leads to the desired a priori bound for wu(t) in C(H). Hence, using a
cutting-off procedure we can transform (20a) into an equation with globally Lipschitz
continuous nonlinearity, u still being a solution of the transformed equation on its
interval of existence. But then it follows from [11, Thm. 3.1] that u is a global
solution of (20). Moreover, u 1is bounded and classical for t » 0. We can thus apply

the results of section 3 to this solution. In view of [3, §14] we arrive at the following

Proposition 11. Assume (21), (23) and (27). Then the boundary value problem (20) has a
unique bounded classical solution u. A8 t + ®», this solution converges (uniformly with
respect to x € M to 0 provided a(s) ¥ 0 for some s ¢ J, and to a r-periodic

solution of the second order equation 2z + a(0)h(z) = 0 in case a 1is linear, a ¥ 0.

Remarks. (i) If we replace the boundary condition (20b) by u =0 on (0,») x 3Q, then
it follows by the same reasoning as above that for smooth initial values ¢ this boundary
value problem has a unique bounded classical solution 9. As t + » this solution

converges to zero, uniformly with respect to x € Q. The admissible values of £ and m
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are again given by (27).

{ii) By essentially the same methods we can also study the asymptotic behavior of solutions
to {20) for more general nonlinearities. In fact, assume that h is an increasing C1
function such that h' has only isolated erros. Moreover, assume that there are constants
£ >0, A »1 with

Inz)} < py(1 + |zh , H(z) > pylz| !

z € R ,
where H(z) = f: h(s)ds and P,, P, positive constants. Then the assertions of

proposition 11 remain true provided we replace condition (27) by m < 2(2+1)/(A=1).
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